подбираем 1 корень:
x=1
тогда этот многочлен можно представить как:
(x-1)(3x^2+ax+b)=3x^3+ax^2+bx-3x^2-ax-b=3x^3+x^2(a-3)+x(b-a)-b
известно, что:
3x^3+x^2-3x-1=3x^3+x^2(a-3)+x(b-a)-b
тогда составляем систему:
a-3=1
b-a=-3
b=1
решаем:
b=1
a=1+3=4
тогда:
3x^3+x^2-3x-1=(x-1)(3x^2+4x+1)
раскладываем на множители 3x^2+4x+1
3x^2+4x+1=0
D=16-12=4
x1=(-4+2)/6=-1/3
x2=-1
3x^2+4x+1=3(x+1)(x+1/3)=(x+1)(3x+1)
в итоге исходный многочлен разложится на множители:
3x^3+x^2-3x-1=(x-1)(x+1)(3x+1)
(。_。)
простите если не так я просто не специалист
ответ:
задать вопрос
войти
октября 16: 24
докажите, что данное уравнение имеет целые корни и найдите их: х^(2)=(√(7−2×√(6))−√(7+2×√()
ответ или решение1
андреева анна
раскроем скобки и решим уравнение, при этом воспользуемся формулами сокращенного умножения:
(a - b)2 = a2 - 2 *a * b + b2.
(a - b)* (а + b) = a2 - b2.
(√(7 - 2 * √6) - √(7 + 2 * √6)) 2 = (√(7 - 2 * √6))2 - 2 * √(7 - 2 * √6) * √(7 + 2 * √6) + √(7 + 2 * √6))2 = 7 - 2 * √6 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) + 7 + 2 * √6 = 14 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) = 14 - 2 * √(72 - (2 * √6) 2) = 14 - 2 * √(49 - 4 * 6) = 14 - 2 * √(49 - 24) = 14 - 2 * √25 = 14 - 2 * √52 = 14 - 2 * 5 = 14 - 10 = 4.
следовательно:
х2 = 4.
х = √4.
х1 = 2; х2 = -2.
ответ: уравнение х2 = (√(7 - 2 * √6) - √(7 + 2 * √6)) 2 имеет корни х1 = 2; х2 = -2
объяснение: