2) sin2t=2sintcost Исходя из того, что cost= -5/13, то угол t лежит или во второй четверти, где sint имеет знак "-"; или лежит в третьей четверти, где sint имеет знак "+". В условии это условие не указано. Поэтому рассмотрим два случая:
1) угол t лежит во второй четверти, то есть π/2 < t < π sint= -√(1-cos²t) = -√(1 - (-5/13)²) = -√(1 - ²⁵/₁₆₉) = -√(¹⁴⁴/₁₆₉) = -12/13 sin2t=2 * (-12/13) * (-5/13) = 120/169 2) угол t лежит в третьей четверти, то есть π < t < 3π/2 sint= √(1-cos²t) = √(1 - (-5/13)²) = √(1 - ²⁵/₁₆₉) = √(¹⁴⁴/₁₆₉) = 12/13 sin2t=2 * (12/13) * (-5/13) = - 120/169
Сумма первого и последнего члена этой прогрессии равна 138. Оба этих числа -двузначные. Значит первое число принимает значения от 39 (=138-99 максимальное значение двузначного числа - 99) до 69 (крайний случай - числа последовательности равны (d = 0)) Пример: Берем первую из этих последовательностей (у нее наибольшая разность - 20) 39, 59, 79, 99
Произведения цифр (3*9, 5*9, 7*9, 9*9) составляют арифметическую прогрессию с разностью 2*9=18.
Теперь найдем наибольшую разность: У нас есть пример с 27, где последнее число имеет наибольшее возможное произведение цифр двузначного числа, поэтому имеет смысл рассматривать лишь числа с произведением цифр < 27.
Кроме того, последнее число дает остаток при делении на 3, значит разность дает остаток при делении на 3, но их разность кратна 3. Поэтому первое число кратно 3.
Теперь кандидаты на первое число: 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69. 4*8=32>27 5*7=35>27 6*6=36>27 6*9=54>27 Остались: 39, 42, 45, 51, 54, 60, 63 Построим соответствующие прогрессии (кроме 39, уже строили) 42, 60, 78, 96 - произведение цифр не арифметическая прогрессия 45, 61, 77, 93 - произведение цифр не арифметическая прогрессия 51, 63, 75, 87 - произведение цифр не арифметическая прогрессия 54, 64, 74, 84 - произведение цифр арифметическая прогрессия с разностью 4 60, 66, 72, 78 - произведение цифр не арифметическая прогрессия 63, 67, 71, 75 - произведение цифр не арифметическая прогрессия
Сумма первого и последнего члена этой прогрессии равна 138. Оба этих числа -двузначные. Значит первое число принимает значения от 39 (=138-99 максимальное значение двузначного числа - 99) до 69 (крайний случай - числа последовательности равны (d = 0)) Пример: Берем первую из этих последовательностей (у нее наибольшая разность - 20) 39, 59, 79, 99
Произведения цифр (3*9, 5*9, 7*9, 9*9) составляют арифметическую прогрессию с разностью 2*9=18.
Теперь найдем наибольшую разность: У нас есть пример с 27, где последнее число имеет наибольшее возможное произведение цифр двузначного числа, поэтому имеет смысл рассматривать лишь числа с произведением цифр < 27.
Кроме того, последнее число дает остаток при делении на 3, значит разность дает остаток при делении на 3, но их разность кратна 3. Поэтому первое число кратно 3.
Теперь кандидаты на первое число: 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69. 4*8=32>27 5*7=35>27 6*6=36>27 6*9=54>27 Остались: 39, 42, 45, 51, 54, 60, 63 Построим соответствующие прогрессии (кроме 39, уже строили) 42, 60, 78, 96 - произведение цифр не арифметическая прогрессия 45, 61, 77, 93 - произведение цифр не арифметическая прогрессия 51, 63, 75, 87 - произведение цифр не арифметическая прогрессия 54, 64, 74, 84 - произведение цифр арифметическая прогрессия с разностью 4 60, 66, 72, 78 - произведение цифр не арифметическая прогрессия 63, 67, 71, 75 - произведение цифр не арифметическая прогрессия
2cos²x=1
cos²x=1/2
cosx=1/√2 cosx= - 1/√2
cosx=√2/2 cosx= - √2/2
x=(+/-) π/4 + 2πk, k∈Z x=(+/-) 3π/4 + 2πk, k∈Z
ответ: (+/-) π/4 + 2πk, k∈Z;
(+/-) 3π/4 + 2πk, k∈Z.
2) sin2t=2sintcost
Исходя из того, что cost= -5/13, то угол t лежит или во второй
четверти, где sint имеет знак "-"; или лежит в третьей четверти,
где sint имеет знак "+". В условии это условие не указано. Поэтому
рассмотрим два случая:
1) угол t лежит во второй четверти, то есть
π/2 < t < π
sint= -√(1-cos²t) = -√(1 - (-5/13)²) = -√(1 - ²⁵/₁₆₉) = -√(¹⁴⁴/₁₆₉) = -12/13
sin2t=2 * (-12/13) * (-5/13) = 120/169
2) угол t лежит в третьей четверти, то есть
π < t < 3π/2
sint= √(1-cos²t) = √(1 - (-5/13)²) = √(1 - ²⁵/₁₆₉) = √(¹⁴⁴/₁₆₉) = 12/13
sin2t=2 * (12/13) * (-5/13) = - 120/169