Определение.Стандартным видом числа называют его запись в виде а·10ⁿ, где 1≤а<10 и n - целое число. Число n называется порядком числа. 2) 1<7,023<10, n=6 Отет. 2)
Пусть скорость первого-х км/ч, а скорость второго- y км/ч Так как первый велосипедист проезжает за 3 ч на 18 км больше,чем второй за 2 ч. , то 3x- 2y=18 Так как расстояние между городами равно 52 км и велосипедисты встретились через 2 ч после начала движения, то 2(x+y)=52 Получили систему уравнений:3x-2y=18 и 2(x+y)=52 2(x+y)=52 x+y=26 x=26-y Подставляем значение х в уравнение 3x-2y=18 3(26-y)-2y=18 78-3y-2y=18 -5y=-60 y=12(км/ч)-скорость второго x=26-y x=26-12 x=14(км/ч)-скорость первого велосипедиста.
Графиком функции y=x^2-3x+2 является парабола, у которой ветви направлены вверх, найдём точку вершины этой параболы: X(вершины)=-b/2a=-(-3)/2=3/2=1,5 подставим это значение в уравнение, чтобы получить Y(вершины): Y(вершины)=(3/2)^2-3*3/2+2=-0,25 затем находим точки пересечения этой параболы с осью ОХ, для этого мы приравниваем данное уравнение к нулю: x^2-3x+2=0 и ищем его корни: x1=1; x2=2; используя полученные точки строим параболу. теперь строим прямую Y=x-1 по точкам: A(1;0); B(0;-1) далее найдём точки пересечения этих графиков , для этого приравняем уравнения этих графиков: x^2-3x+2=x-1 корни этого уравнения равны: x1=1; x2=3; координаты точек пересечения этих графиков равны: C(1;0) и D(3;2) фигура ограничена линиями x=1 и x=3 и уравнениями графиков функций, обозначим их y=f1(x) и y=f2(x), тогда площадь фигуры вычисляется по формуле: S= считаем интеграл: S= S=4/3
2) 1<7,023<10, n=6
Отет. 2)