сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см
(х+√(х²-1))⁴ - 1= (((х+√(х²-1))²-1)(((х+√(х²-1))²+1)= возводим в квадрат =
=(х²+2х√(х²-1)+х²-1-1)(х²+2х√(х²-1)+х²-1+1)=
=(2х²+2х√(х²-1)-2)(2х²+2х√(х²-1))=4х(х+√(х²-1))(х²+х√(х²-1)-1)
Сокращаем и числитель и знаменатель данной дроби на
4х(х+√(х²-1)), получим
(х+√(х²-1))/(х²+х√(х²-1)-1)= освобождаемся от иррациональности в знаменателе=
(х+√(х²-1))(х²-х√(х²-1)-1)/(х²+х√(х²-1)-1)(х²-х√(х²-1)-1)=
=(х³+х²√(х²-1)-х²√(х²-1)-х(х²-1)-х-√(х²-1))/((х²-1)²-(х√(х²-1))²)=
=(х³-х³+х-х-√(х²-1))/(х⁴-2х²+1-х⁴+х²)=
=(-√(х²-1))/(1-х²)=1/√(х²-1).