Найти в градусах наименьший положительный угол. подскажите сразу откуда черпать инфу на примере данного уравнения,какие формулы учить (cos2x-cos4x)²=4+cos²3x
Применим формулу cos(2α)=1-2cos²α к cos(4x): cos(4x)=1-2cos(2x). Тогда уравнение перепишется так: (2cos²(2x)-cos(2x)-1)²=4+cos²(3x) cos(2x), как и косинус любого другого угла, принимает значения от -1 до 1 включительно. Тогда (2cos²(2x)-cos(2x)-1)² принимает значения от 0 (когда cos2x=1) до 4 (когда cos2x=-1) включительно. Но 4+cos²(3x)≥4,а значит, раз левая часть всегда меньше или равна 4, а правая больше или равна 4, равенство возможно только тогда когда обе части равны 4. Получаем систему: {4+cos²(3x)=4 {(2cos²(2x)-cos(2x)-1)²=4 Из второго уравнения, с учетом выше написанного, сразу получаем cos2x=-1. Отсюда 2x=π+2πn x=π/2+πn, где n - любое целое число. Эта серия корней удовлетворяет и первому уравнению системы, поэтому это и есть решение. Теперь надо отобрать наименьший положительный корень. Это очевидно π/2 или 90°. А вот и годный сайтик для обучения: http://mathus.ru/math/. Внизу есть раздел "Базовый курс математики", а в нем "Тригонометрия".
1a) строим график функции это парабола с центром в точке (2,5; -0,25) и ветвями вверх она пересекает ось Ох в точках 2 и 3 (см. рисунок 1) ответ: х ∈(-∞;2) U (3; +∞) 1б) это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2) она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем" ответ: х∈(-∞; 2) U (2; +∞) 2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом". ответ: х ∈ (-3; 5) U (5; 8)
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
cos(2x), как и косинус любого другого угла, принимает значения от -1 до 1 включительно. Тогда (2cos²(2x)-cos(2x)-1)² принимает значения от 0 (когда cos2x=1) до 4 (когда cos2x=-1) включительно. Но 4+cos²(3x)≥4,а значит, раз левая часть всегда меньше или равна 4, а правая больше или равна 4, равенство возможно только тогда когда обе части равны 4. Получаем систему:
{4+cos²(3x)=4
{(2cos²(2x)-cos(2x)-1)²=4
Из второго уравнения, с учетом выше написанного, сразу получаем
cos2x=-1. Отсюда
2x=π+2πn
x=π/2+πn, где n - любое целое число. Эта серия корней удовлетворяет и первому уравнению системы, поэтому это и есть решение. Теперь надо отобрать наименьший положительный корень. Это очевидно π/2 или 90°.
А вот и годный сайтик для обучения: http://mathus.ru/math/. Внизу есть раздел "Базовый курс математики", а в нем "Тригонометрия".