Как говорится чем ужаснее уравнение , тем проще оно решается... Приглядись, у тебя дан квадратный трехчлен под корнем, и модуль, причем корень исключительно число положительное и модуль тоже число положительно , в итоге |a|+|b|=0 , сумма 2-ух положительных чисел ну явно никак не даст нуль, только в одном случае, если они оба равны нулю, в нашем случае, если разложить на множители имеем: √(x-4)(x+2)+|(x+2)(x-5)=0. Опа, и в правду, у обоих выражений общий множитель (x+2) , значит это и будет ед.решением данного уравнения. Таким образом заключаем вывод, решение данного уравнение одно и равно оно: x+2=0 x=-2. А не верьте аналитическому рассуждение, постройте графики √(x^2-2x-8) и -|x^2-3x-10| в одной системе координат, и увидите, что данные графики пересекаются в ед.точке x=-2. А геометрический смысл уравнения это пересечение двух графиков :3 Всего доброго :3.
A) Решение: y=0; y= (x-2)(x-4)/x+3; (x-2)(x-4)/x+3=0; | x+3 неравно 0, следовательно x неравен -3 (x-2)(x-4)=0; х=2 и x=4 x принадлежит промежутку (2;4). Думаю рисунок сами сможете нарисовать. Там луч надо нарисовать и параболу ветвями вверх. Неравенство строгое, поэтому точки выколотые. б) a) Решение:y=0; y= x^2-8x+16/x^2-3x-10; x^2-3x-10=(x-5)(x+2)(x-2)(x-4)/x+3=0; | (x-5)(x+2) неравно 0, следовательно x неравен 5 и ч неравен -2 x^2-8x+16=0;D=64-64=0 следовательно один знаменатель. x=8/2=4x принадлежит промежутку (4;+∞). Рисунок: луч надо нарисовать. Штриховка в сторону +∞. Неравенство строгое, поэтому точка выколотая.