Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,}
Целые числа – это числа из множества {0, 1, -1, 2, -2, }. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, чтоZ={1,2,3,}.
Рациональные числа – это числа, представимые в виде дроби, где m — целое число, а n — натуральное число. Для обозначения рациональных чисел используется латинская буква Q. Все натуральные и целые числа – рациональные.
cos3x=-2cosx
4cos³x-3cosx+2cosx=0
4cos³x-cosx=0
cosx(4cos²x-1)=0
cosx=0⇒x=π/2+πn,n∈z
4cos²x-1=0
4(1+cos2x)/2=1
1+cos2x=1/2
cos2x=-1/2
2x=+-2π/3+2πk
x=+-π/3+πk,k∈z
2
cosx-cos(π/2-11x)=0
-2sin(6x-π/4)sin(-5x+π/4)=0
2sin(6x-π/4)sin(5x-π/4)=0
sin(6x-π/4)=0
6x-π/4=πn
6x=π/4+πn
x=π/24+πn/6,n∈z
sin(5x-π/4)=0
5x-π/4=πk
5x=π/4+πk
x=π/20+πk/5,k∈z
3
(sinx+sin7x)+(cos3x-cos5x)=0
2sin4xcos3x+2sin4xsinx=0
2sin4x*(cos3x+sinx)=0
sin4x=0
4x=πn
x=πn/4
cos3x+cos(π/2-x)=0
2cos(x+π/4)cos(2x-π/4)=0
cos(x+π/4)=0
x+π/4=π/2+πk
x=π/4+πk,k∈z
cos(2x-π/4)=0
2x-π/4=π/2+πm
2x=3π/4+πm
x=3π/8+πm/2,m∈z