1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
ОДЗ:
x³-x>0 x(x²-1)>0
-∞+0-1++∞ x∈(-∞;0)U(1;+∞)
x>0 x∈(0;+∞) ⇒ x∈(1;+∞)
log₃(x³-x)/x=log₃3
(x(x²-1)/x=3
x²-1=3
x²=4
x₁=2 x₂=-2 ∉ОДЗ
ответ: х=2.
log₂(3x+1)*log₂x=2*log₂(3x+1)
ОДЗ: 3x+1>0 x>-1/3 x>0 ⇒ x∈(0;+∞)
2*log₂(3x+1)-log₂(3x+1)*log₂x=0
log₂(3x+1)*(2-log₂x)=0
log₂(3x+1)=0
3x+1=2⁰
3x=1
3x=0
x=0 ∉ОДЗ
2-log₂x=0
log₂x=2
x=2²
x=4.
ответ: x=4.
(√(7x+1)-√(6-x))²=(√(15+2x))² ОДЗ: x≥-1/7 x≤6 x≥-7,5 x∈(-1/7;6)
7x+2√((7x+1)(6-x))+6-x=15+2x
2√(6+41x-7x²)=8-4x I÷2
(√(6+41x-7x²))²=(4-2x)²
6+41x-7x²=16-16x+4x²
11x²-57x+10=0 D=2809
x₁=5 x₂=-2/11 ∉ОДЗ
ответ: х=5.