Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)
cos a = √1 - sin²a = √1 - 3/4 = √1/4 = 1/2, знак плюс, так как в первой четверти
tg a = sin a / cos a = √3 / 2 * 2 = √3