М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Анастасия3342
Анастасия3342
07.09.2022 02:34 •  Алгебра

Методом индукции докажите 1) формулу общего члена арифметической прогрессии a_n=a_1+d*(n-1) 2) формулу суммы первых n членов арифметической прогрессии; 3) формулу общего члена прогрессии при

👇
Ответ:
лулу36
лулу36
07.09.2022
1)
База индукции: 1

a_1=a_1+d*0=a_1 проверено.

Предположим, что утверждение верно для n=k.
a_{k}=a_1+d(k-1)=a_1+dk-d
Покажем, и докажем, что утверждение верно так же для n=k+1.
a_{k+1}=a_1+d[(k+1)-1]=a_1+dk
Так как , следуя предположению a_{k}=a_1+d(k-1)=a_1+dk-d то прибавив к данному выражению d. Мы получим  следующий член a_{k+1}=a_1+d[(k+1)-1]=a_1+dk.
Т.е. предположение верно. Ч.Т.Д.

2)
S_n= \frac{n[2a_1+d(n-1)]}{2}
База : 1
Проверка: S_1= \frac{2a_1}{2}=a_1

Предположение: n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}

Теперь покажем и докажем, что данное выражение верно и при n=k+1:

Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить  k+1 член (используя формулу которую мы доказали ранее):
S_{k+1}= \frac{2a_1k+dk^2-dk}{2}+(a_1+dk)= \frac{2(a_1+dk)+2a_1k+dk^2-dk}{2}\\= \frac{2a_1+2dk+2a_1k+dk^2-dk}{2}= \frac{2a_1k+2a_1+dk^2+dk}{2}\\
= \frac{2a_1(k+1)+dk(k+1)}{2}= \frac{(k+1)(2a_1+dk)}{2}
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.

3)
Это не формула общего члена, это формула суммы.
При 
q=1 получается деление на ноль, поэтому сразу пишем q \neq 1
База: 1
b_1= \frac{b_1(1-q)}{(1-q)}=b_1
Предположим, что формула верна для: n=k
Покажем и докажем что формула верна для n=k+1:
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}
Ч.Т.Д.
4,4(66 оценок)
Открыть все ответы
Ответ:
Діанагрeк
Діанагрeк
07.09.2022
Полную вероятность по любому надо искать, Формулы Бернулли не помню чего это.

Поскольку Вероятность поражения уже известна = P_k, то остается вычислить вероятности того сколько самолётов собют системы ПВО.
Хотя тут ещё тот вопрос, как летят самолеты: по одному и система ПВО отдельно пуляет по каждому или вместе, и тогда возможно для каждого следующего сбитого надо расчитывать попадание уже исходя из того что сбито 1, 2... самолётов, общем относительную вероятность (давно я таких задач просто не решал) :(

Пусть летят по 1-му и попадания по каждому самолету есть события независимые :)
тогда
пролетело 4 самолёта 0,2^4
пролетело 3 самолёта 0,2^3\cdot0,8
пролетело 2 самолёта 0,2^2\cdot0,8^2
пролетело 1 самолёта 0,2\cdot0,8^3
пролетело 0 самолёта 0,8^4 - логика подсказівает, что если самолеты были сбиты системой ПВО то соответствующая вероятность попадания P_0=0 но как по мне это не наше дело, нам ничего не мешает оставить это слагаемое в формуле, в результате получим:
P=0,2^4P_4+0,2^3\cdot0,8P_3+0,2^2\cdot0,8^2P_2+0,2\cdot0,8^3P_1+0,8^4P_0=
=\frac{P_4+4P_3+4^2P_2+4^3P_1+4^4P_0}{5^4}

ответ: \frac{P_4+4P_3+4^2P_2+4^3P_1+4^4P_0}{5^4}
4,8(72 оценок)
Ответ:
sarmat1482
sarmat1482
07.09.2022
Берём 15 победителей и ставим их аккуратно в линеечку :)
а 15 книг начинаем переставлять между ними (уточним задачу - книги наверняка должны быть розданы по 1 каждому, а то ведь можно роздать кому по 2 и больше а кому и ничего):
1) берём первые 3 книги 15 победителям можем их роздать так:
первую книгу мы можем роздать 15 вариантами, останется 14 детей и 2-рую книгу мы можем роздать 14 вариантами, ну и третью 13 вариантами оставшимся детям.
Но поскольку книги одинаковые то у нас получится много одинаковых роздач, а точнее по 6 одинаковых роздач каждого вида.
Почему шесть, для ответа рассмотрим роздачи 1, 2, и 3 победителям:
поскольку мы книги роздавали по 1 (сначало 1, поток 2, потом 3) то щитаем что они у нас пронумерованы.
1 побед(1 книга) - 2 (2) - 3 (3)
1 (1) - 2 (3) - 3 (2)
1 (2) - 2 (1) - 3 (3)
1 (2) - 2 (3) - 3 (1)
1 (3) - 2 (1) - 3 (2)
1 (1) - 2 (2) - 3 (1)
надеюсь суть уловили.
поскольку по 6 одинаковых, то число роздач надо разделить на 6, получим:
\frac{15\cdot14\cdot13}{2\cdot3}
Осталось 12 победителей, роздаем им 4 книги, аналогично описанному выше:
\frac{12\cdot11\cdot10\cdot9}{2\cdot3\cdot4}
ну а уж тем 8 кому не досталось книг типа 1 или 2 с почестями и с одним однозначным вариантов вручаем книгу типа 3.
а в результате получим:
P=\frac{12\cdot11\cdot10\cdot9}{2\cdot3\cdot4}\frac{15\cdot14\cdot13}{2\cdot3}=\frac{15\cdot14\cdot13\cdot12\cdot11\cdot10\cdot9}{2\cdot3\cdot4\cdot2\cdot3}

А если вы чтото слышали о Комбинаторике и формулах:
C_n^k=\frac{n!}{(n-k)!k!}
то можете смело и без лишних слов написаить в ответе:
P=C_{15}^3C_{12}^4=\frac{15!}{12!3!}\frac{12!}{8!4!}=\frac{15!}{8!4!3!}

ответ: \frac{15!}{8!4!3!}
4,4(57 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ