Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна a=16-х см. Площадь прямоугольника равна: S=a*b=60 см² Составим и решим уравнение: х(16-х)=60 16х-х²=60 х²-16х+60=0 D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4) х₁= = = 10 х₂= = = 6 ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета: х²-16х+60=0 х₁+х₂=16 х₁*х₂=60 х₁=10 х₂=6
Проверим: Ширина листа равна 10 см, длина 16 см. Вырезанный квадрат со стороной а=10 см. Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см. Вырезанный квадрат со стороной а=6 см. Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
1) Число 10a+b. Сумма цифр = a + b = (10a + b) - 9a 2) Остаток от деления суммы цифр на 9 такой же, что и от деления самого числа на 9. 3) Если после умножения на число сумма цифр не поменялась, значит, не поменялся и остаток от деления на 9. 4) Следовательно, можно найти сначала найти число R (0 <= R < 9) - остаток от деления исходного числа на 9, такое, что при умножении любого однозначного числа на R получалось бы число, дающее в остатке при делении на 9 опять число R. 5) Существует только одно такое число R - это R = 0 6) Исходное число должно делиться на 9. 7) Все кандидаты на роль исходного числа: 54, 63, 72, 81, 90 8) Не подходят числа: 54 (54*7 - сумма цифр 18); 63 (63*3 - сумма цифр 18); 72 (72*4 - сумма цифр 18); 81 (81*6 - сумма цифр 18). 9) Легко проверить, что 90 подходит.