ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3
ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3
x^4+y^4+6x=29
Решать будем подстановкой. Подстановку сделаем из 1-го уравнения:
у² = 3 - х
Подставим во 2-е уравнение. Получим:
х⁴ +(3 -x)² +6x -29 = 0
x⁴ +9 -6x + x² +6x -29= 0
x⁴ +x² -20 = 0
Это биквадратное уравнение. х² = t
t² + x - 20 = 0
По т. Виета t₁ = -5, t₂ = 4
x² = t
a) x² = -5
нет решений.
б) х² = 4
х = +-2
Теперь будем х = +- 2 подставлять в 1-е уравнение ( можно и во 2-е)
2 + у² = 3 -2 +у² = 3
у² = 1 у² = 5
у = +-1 у = +-√5
ответ(2;1); (2;-1); (-2;√5); (-2; -√5)