64 получено от числа 2 умноженного на себя же в 6 раз. То есть получаем, что 2 в 6 Степни равна 64. Если в примере дано число со степенью и за скобкой ещё степень. То внешнюю степень (она за скобкой) умножаем на внутреннюю ( степень внутри скобки). То есть (2 в минус 3 степени) в 3 степени, мы не трогаем основу, то есть цифру 2, а просто умножаем степень на степень, то есть -3 * 3 = -9 И у нас выходит 2 в минус 9 Степени. А теперь при умножений чисел со степенями, если есть возможность приравнять основу к одному числу, пользуемся этой возможностью. Зная, что 64 это 2 в 6 степени и его умножили на 2 в минус 9 степени, переходим к правилу. Если у основания степеней одни и те же числа. То основание не трогаем, а работает со степенями. То есть если 2^1 * 2^5 то это равняется к 2 ^ (1+5) = 2^6 степени. Если дело обстоит с делением, то основание не трогаем, а занимаемся степенями. То есть если в случае 2^1 : 2^5 = 2^1-5= 2^-4 А теперь если степень отрицательное число, то число со степенью отпускается вниз, чтобы избавится от минуса. То есть 2^-4 мы должны писать как 1/2^4 или 1/16
В примере 64*(2^3)^-3 Приводим к общему основанию 2^6 * (2^3)^-3 Теперь умножаем степень на степень и избавляемся от скобки 2^6 * 2^-9 Так как основания одни, но степень разные. Прибавляем степени, так как у нас знак умножения 2^6+(-9) = 2^-3 Вспоминаем правило, при вычитании чисел, от большего отнимаем меньшее и ставим знак большего, то есть мы от 9 отняли 6, и поставили знак числа 9
Теперь, так как ответ 2^-3 в минусовой степени. Наше число переходит вниз 1/2^3 или 1/8
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
b) a + b - c = (a + b) - c = 10 - 7 = 3