М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ааааааааввв
Ааааааааввв
23.11.2021 22:11 •  Алгебра

Разложить на многочлен подробно 2m(a-b)-3n(b-a)

👇
Ответ:
ravengan
ravengan
23.11.2021
2m(a-b)-3n(b-a) =2m(a-b)+3n(a-b) =(a-b)(2m+3n)
4,8(31 оценок)
Открыть все ответы
Ответ:
срочно118
срочно118
23.11.2021

Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.

Т.к. площадь квадрата находят по формуле  S = а², где а - сторона квадрата,  о площадь данного квадрата равна (х²) см².

А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).

Т.к. площадь квадрата на 50 см² меньше площади прямоугольника,  то составим и решим уравнение:

3x² - 15х = x² + 50,

3x² - x² - 15x - 50 = 0,

2x² - 15x - 50 = 0,

D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,

x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,

x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.

Значит, сторона квадрата равна 10 см.

ответ: 10 см.

4,5(71 оценок)
Ответ:
карина2148
карина2148
23.11.2021
1)
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1     x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41   наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40  -   наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8

F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15

выбираем из них наибольшее и наименьшее

2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4     x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку

F(0)=10   - наименьшее
F(3)=3³+9·3²-24·3+10=46   - наибольшее
4,6(80 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ