Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
тогда (Х+3) - число участников пошло на самом деле
340/Х - расход на 1 участника должно было
380/(Х+3) - расход на 1 участника был на самом деле
Известно , что расход на 1 участника ниже на самом деле, чем предполагалось
Составим уравнение:
340/Х - 380/(Х+3)=1
340(Х+3) - 380х = х(Х+3)
340х + 1020 - 380х =х^2 +3х
- х^2 -43х +1020=0 | *(-1)
Х^2 +43х-1020=0
Д=\| 5929=77
Х1= 17 участников должно было пойти
Х2= -60 - не подходит , т и отрицательное кол-во
Х+3=17+3=20 участников было
ответ: 20 участников было