2) 
 3) 
 4) 
                                                Объяснение:
задача:
В первом ящике 25% от общего числа составляют красные карандаши,
а во втором 1/6 часть -это красные карандаши.
Если все карандаши высыпать в один ящик,
то красные карандаши будут составлять 20% от общего числа всех карандашей.
На сколько процентов меньше карандашей во втором ящике по сравнению с первым?
пусть (а) карандашей в первом ящике, тогда красных карандашей в первом ящике (0.25*а) или (а/4)
пусть (b) карандашей во втором ящике, тогда красных карандашей во втором ящике (b/6)
Если все карандаши высыпать в один ящик (a+b), то красных карандашей будет (0.20*(а+b)) или (а+b)/5
получили уравнение: (а/4) + (b/6) = (а+b)/5
умножим обе части равенства на 60:
15*a + 10*b = 12*a + 12*b
3a = 2b --> b = 1.5a во втором ящике БОЛЬШЕ карандашей (!!)... на 50%
возможно, в условии опечатка...
Пусть в сектор 
 вписан прямоугольник 
. 
 и 
 - середины сторон 
 и 
 соответственно. Так как прямоугольник симметричен оси симметрии сектора, то две его стороны перпендикулярны этой оси, а две другие стороны - параллельны этой оси.
Так как прямоугольник симметричен оси симметрии сектора, то:

Проведем луч 
, составляющий с осью симметрии сектора угол 
. Зададим ограничения на х: ![x\in[0;\ \alpha ]](/tpl/images/1361/0024/bc17d.png)
Найдем сторону прямоугольника, перпендикулярную оси симметрии сектора.
Рассмотрим треугольник 
. Запишем соотношение для синуса угла х:

Заметим, что 
 соответствует радиусу сектора. Тогда, выражение для 
 примет вид:

Так как 
- половина стороны 
, то найдена первая сторона прямоугольника:

Найдем сторону прямоугольника, параллельную оси симметрии сектора. Представим ее длину в виде:

Длину  найдем из того же прямоугольного треугольника 
, записав выражение для косинуса угла 
:

Выражаем 
:

Длину 
 найдем из прямоугольного треугольника 
. Запишем выражение для тангенса угла 
:

Откуда:

Так как 
, то:

Таким образом, найдена вторая сторона прямоугольника:

Площадь прямоугольника равна произведению его смежных сторон:


Найдем производную:





Приравняем производную к нулю:





Учитывая ограничения 
 получим, что:

Проверим, является ли эта точка точкой экстремума.
Найдем значение производной при 
:

Найдем значение производной при 
:


При переходе через точку 
 производная меняет знак с плюса на минус. Значит, это точка максимума.
Найдем значение максимума:





Значит, наибольшая площадь прямоугольника равна 
ответ: 