2. Натуральным числом. Множество натуральных чисел алгебраически замкнуто относительно операции сложения.
3. В том случае, если уменьшаемое больше вычитаемого.
4. Произведение натуральных чисел — натуральное число. Множество натуральных чисел алгебраически замкнуто относительно операции умножения.
5. Нет, не всегда. Пример: 9 не делится нацело на 5. В таком случае можно разделить с остатком, где неполное частное и остаток будут натуральными числами.
6. На единицу (нейтральный элемент в аксиоматике умножения).
Перепишем это уравнение в виде
(2n+5-2m)(2n+5+2m)=21 (проверяется раскрытием скобок)
Значит 2n+5-2m=1, 2n+5+2m=21, откуда n=3, m=5
или 2n+5-2m=3, 2n+5+2m=7, откуда n=0, что не является натуральным.
Других вариантов представить 21 в виде произведения двух натуральных чисел нет, поэтому, ответ: n=3.