По формуле вс угла:
4\sin x-16\cos x= \sqrt{4^2+4^4}\sin(x-\arcsin \frac{16}{ \sqrt{4^2+4^4} } )=4 \sqrt{17} \sin(x-\arcsin\frac{4}{\sqrt{17} })4sinx−16cosx=
4
2
+4
4
sin(x−arcsin
4
2
+4
4
16
)=4
17
sin(x−arcsin
17
4
)
Поскольку синус принимает свои значения - [-1;1], то
\begin{lgathered}-1 \leq \sin(x-\arcsin\frac{4}{\sqrt{17} } )\leq 1\\ \\ -4 \sqrt{17} \leq \sin(x-\arcsin\frac{4}{\sqrt{17} }) \leq 4 \sqrt{17}\end{lgathered}
−1≤sin(x−arcsin
17
4
)≤1
−4
17
≤sin(x−arcsin
17
4
)≤4
17
Наибольшее - 4 \sqrt{17}4
17
и наименьшее - (-4 \sqrt{17} )(−4
17
)
5x²-3x+1=0
D=9-4*5=-11<0 значит
5x²-3x+1>0 при любых значениях х.
х²-4х-12=0
В=16+4*12=64=8²
х₁=(4+8)/2=6
х₂=(4-8)/2=-2
(5x²-3x+1)(x-6)(x+2)<0
x∈(-2; 6)