Так как cos 2*x=cos²x-sin²x, то уравнение приводится к виду cos²x-sin²x+3*sin x-2=(1-sin²x)-sin²x+3*sin x-2=-2*sin²x+3*sin x-1=0, или 2*sin²x-3*sin x+1=0. Пусть sin x=t, тогда получаем квадратное уравнение относительно t: 2*t²-3*t+1=0. Дискриминант D=(-3)²-4*2*1=1, и тогда мы получаем два уравнения для sin x:
t1=sin x1=(3+1)/4=1, t2= sin x2=(3-1)/2=1/2.
Если взять указанный в условии отрезок [-3*π;π], то наибольшим решением уравнения на данном отрезке является x=5*π/6. Проверка: cos²(5*π/6)-sin²(5*π/6)+3*sin(5*π/6)=(-√3/2)²-(1/2)²+3*1/2=3/4-1/4+3/2=2.
В каждом часе 6 промежутков по 10 мин, вероятность того, что А прийдёт в определенный промежуток времени 1/6, так и для другого, но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6; так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит) прпросуммируем результат
то-есть 1/6 сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6
68% ну если не до целых 68,6%