М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
luiza2010
luiza2010
17.10.2021 12:08 •  Алгебра

Три в двенадцатой степени разделить на восемьдесят одну во второй степени

👇
Ответ:
yliuagulian
yliuagulian
17.10.2021
3^12/81^2=3^12/(3^4)^2=
=3^12/3^8=3^4=81
4,4(72 оценок)
Открыть все ответы
Ответ:
den536
den536
17.10.2021

ответ ответ дан Solnishkosandra

№1.

а) 1. введу функцию у=3х^2 - 5х - 22.

2. Найду нули фунции через дискриминант:

D= 25 - 4 * 3 * (-22) = 25 + 264 = 289 , Д больше 0, 2 корня.

х1 = ( 5 - 17) / 6 = - 2; х2 = ( 5+ 17) / 6 = 3,7.

3. так как ветви параболы аправленны вверх, решение находится за корнями, то есть х принадлежит ( - бесконечность ; -2) ( 3, 7 ; + бесконечность)

в) 1. 2x^2 + 3х+ 8 = 0

2. D=9 - 4 * 2 * 8 = - 55. Д меньше 0, ветви параболы напр ввер, уравнение решения не имеет.

б) 1. х^2 = 81

х1 = 9, х2 = -9

2. так как ветви параболы направленны вверх, решение находится между корнями. то есть ответ: х принадлежит ( - 9; 9)

№2.

1.нули функции

х1=4, х2 = 1, х3= - 5

2. наносим значения на числовую прямую и

расставляем знаки

- + - +

(-5)(1)(4)> х

3. так как f(x) < 0 (по условию), то выбмраем интервалы, где знак (-), то есть ответ : х принадлежит ( - бесконечность; -5) , (1; 4)

№3

1. Введу ф-цию : 5x^2 + nx +20 = 0

2. D = n^2 - 4 * 5 * 20 = n^2 - 400.

3. Чтобы уравнение не имело корней, D должен быть меньше 0 ( так как при D<0 уравнение не имеет корней) Значит,

n^2 - 400 < 0

n^2 = 400

n1 = 20, n2 = - 20.

ответ: 20, - 20.

4,8(90 оценок)
Ответ:
hahahagall
hahahagall
17.10.2021

23.12.20 :: 13:04:19 Выбор языка:

Russian

Добро Гость выберите Вход или Регистрация

В ПАТЕНТОВАНИИ СТАТЬИ И ПУБЛИКАЦИИ Научно-техническая библиотекаНаучно-техническая библиотека SciTecLibrary Правила форума

Отправить

Научно-технический форум SciTecLibrary › Точные науки и дисциплины › Дебаты по Теории Относительности Эйнштейна › Неинвариантность Уравнений Максвелла

(Модераторы: peregoudovd, kkdil, E-Eater)

‹ Предыдущая тема | Следующая тема ›

Страниц: 1 2 3 4 ... 6Послать Тему Печать

Неинвариантность Уравнений Максвелла (Прочитано 14867 раз)

meandr

Ветеран форума

***

Вне Форума

Сообщений: 3827

КОСМОполит

Re: Неинвариантность Уравнений Максвелла

ответ #50 - 21.02.17 :: 12:42:22 pop писал(а) 21.02.17 :: 10:15:30:

ответьте ещё раз. Если на опыте измерены величины, которые при подстановке в уравнение дают истинность уравнения, то какие могут быть "трактовки"?

Если в это же уравнение ввести коэффициент в одно из ненулевых слагаемых, то уравнение не останется истинным. И никакими "трактовками" это не исправить.

Отвечу еще раз - первый на этой странице и последний, если не поймете (что скорее всего).

1. В уравнении напряженности (9) п.600 Трактата, составленном для ОБЩЕГО случая движущейся системы, предусмотрен "составной" скалярный потенциал

$\psi+\psi'$

где $\psi$ - обычный статический "кулоновский" потенциал - "собственный" потенциал поля заряда

$\psi'=\vec v \vec A$ - конвективный кинетический потенциал.

...

В современных обозначениях уравнение напряженности (9) в Трактате Максвелла

$\vec E=-\nabla\varphi-\nabla(\vec v \vec A)-\frac{\partial \vec A}{\partial t}$.

Это уравнение не во всех случаях адекватно опытам.

Поэтому

2. В современной ортодоксально-релятивистской теории используется раннее эфирное уравнение напряженности БЕЗ явного разбиения скалярного потенциала на "собственный" и конвективный потенциалы

$\vec E=-\nabla\varphi-\frac{\partial \vec A}{\partial t}$,

хотя наличие такого разделения с конвективным потенциалом неявно подразумевается преобразованиями Лоренца для потенциалов

В таком виде уравнения становятся адекватными опытам - но только в релятивистской трактовке понятий пространства и времени.

3. В классическом представлении пространства и времени уравнение Трактата с наличием конвективного потенциала становится адекватным только с коэффициентом 1/2 и определении вмп А как импульса движущегося поля "собственного" потенциала $\vec A=\varphi \vec v/c^2$

4,4(71 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ