√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18 т.к выглядит по татарски , напишу письменно корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез) , корень из 9 - это 3 , следовательно получаем: корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2 а корень из 4 - это 2, получаем корень из 4,5, умноженное на 3, умноженное на на 2 и ещё раз умноженное на корень из двух 3 и 2 перемножаем , получаем 6. и теперь у нас остаётся корень из 4,5 и корень из двух их мы тоже перемножим , получим корень из 9 а корень из 9 - это 3 получается что 6*3=18 ОТВЕТ : 18 спрашивай, если что не понятно
1) Найдите наименьшее значение ф-ии y = 5cos x + 6x + 6 на отрезке [0;3π/2] Решение Находим первую производную функции: y' = - 5sin(x) + 6 Приравниваем ее к нулю: - 5sin(x) + 6 = 0 Глобальных экстремумов нет Находим стационарные точки: Вычисляем значения функции на концах отрезка f(0) = 11 f(3/2) = 11 ответ: Имеются только локальные экстремумы (на заданном интервале) fmin = 11, fmax = 11
2) Найдите наименьшее значение ф-ии y = (x+6)^2(x+1) - 23 на отрезке [-7;-4] Решение Находим первую производную функции: y' = (x+1)(2x+12) + (x + 6)² или y' = 3x² + 26x + 48 Приравниваем ее к нулю: 3x² + 26x + 48 = 0 D = 676 - 4*3*48 = 100 x₁ = (- 26 - 10)/6 x₁ = - 6 x₂ = (- 26 + 10)/6 x₂ = - 8/3 Вычисляем значения функции на концах отрезка f(- 6) = - 23 f(- 8/3) = - 1121/27 f(- 7) = - 29 f(- 4) = - 35 ответ: fmin = -35, fmax = - 23