Этого я не указала,но: нуль подмодульного выражения разбивает функцию на две кусочно-непрерывных из-за геометрического смысла модуля(расстояние), но мы раскрываем его алгебраически. Т.е.,при значениях аргумента,стоящих правее нуля подмодульного выражения и его включая,подмодульное выражение принимает неотрицательные значения,поэтому ничего не изменится,когда мы "скинем" модуль. А если левее его нуля,то подмодульное будет отрицательным,но из-геометрического смысла мы при раскрытии выставляем минус перед модулем(меняем знаки). Я этого не писала(разбора т.е.),но если вы вчитаетесь внимательно,то вы будете шарить в таких графиках. Задача несложная,если есть навык,на моём ГИА был посерьёзней график:) Из точек m:берём ординату вершины одной из парабол,берём ординату абсциссы склейки графиков.
По теореме Виета
х₁+х₂ = -b = 8
х₁*х₂ = с = 11
а=1, b=-8, c=11
х₁²+х₂² = (х₁+х₂)²-2х₁х₂ = 8²-2*11 = 64-22 = 42