1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Предлагаю 1)используя формулы комбинаторики. В данном случае формула размещений: всего нечетных цифр - 5, их надо разместить по 3 цифры: n=5; k=3 ответ: 60 2) логический пусть трехзначное число будет a.b.c среди цифр от 0 до 9: 1,3,5,7,9 - нечетные 0,2,4,6,8 - четные значит на место одной из цифр a, b или c можно будет поставить 5 нечетных цифр. Но так как цифры не должны повторяться, для каждой следующей цифры, количество вариантов будет уменьшатся на 1. Это значит: для c - 5 вариантов, значит для b - будет 5-1=4 варианта, для a будет соответственно 4-1=3 варианта в числе a.b.c - цифра a будет принимать значения: 1,3,5,7,9 цифра b при каждом значении a: 1,3,5,7,9 исключая цифру а, аналогично и с c, исключая цифру из a и b, всего таких чисел будет 5*4*3=60 ответ: 60
2пример-5(x+2)-3(4-x)-(3+5)x-2=5x+10-3(4-x)-(3+5)x-2=5x+10-(12-3x)-(3+5)x-2=5x+10-12+3x-(3+5)x-2=5x-2+3x-(3+5)x-2=8x-2-(3+5)x-2=8x-2-8x-2=-2-2=-4
3пример-3(x+5)-5(4-x)-x-3=3x+15-5(4-x)-x-3=3x+15-(20-5x)-x-3=3x+15-20+5x-x-3=3x-5-x-3=8x-5-x-3=7x-5-3=7x-8