В решении.
Объяснение:
Дві конкуруючі фірми, працюючи одночасно, поставили в місто певну кількість товару за 4 дні. За скільки днів може виконати цей же об'єм товаропостачання кожна фірма окремо, якщо фірма, що є технічним лідером може зробити це швидше на 6 днів, ніж друга.
Две конкурирующие фирмы, работая одновременно, поставили в город определенное количество товара за 4 дня. За сколько дней может выполнить этот же объем товароснабжения каждая фирма отдельно, если фирма, которая является техническим лидером, может сделать это быстрее на 6 дней, чем другая.
х - объём товара в день первой фирмы.
у - объём товара в день второй фирмы.
1 - весь товар.
1/х - дней потребуется первой фирме.
1/у - дней потребуется второй фирме.
По условию задачи система уравнений:
(х + у) * 4 = 1
1/х - 1/у = 6
Выразить х через у в первом уравнении:
(х + у) * 4 = 1
Разделить обе части на 4 для упрощения:
х + у = 0,25
х = 0,25 - у;
Преобразовать второе уравнение.
Умножить обе части на ху, чтобы избавиться от дроби:
1/х - 1/у = 6
у - х = 6ху
Подставить в уравнение выражение х через у:
у - (0,25 - у) = 6у(0,25 - у)
у - 0,25 + у = 1,5у - 6у²
6у² - 1,5у + 2у - 0,25 = 0
6у² + 0,5у - 0,25 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 0,25 + 6 = 6,25 √D=2,5
у₁=(-b-√D)/2a
у₁=(-0,5-2,5)/12 = -3/12, отбрасываем, как отрицательный.
у₂=(-b+√D)/2a
у₂=(-0,5+2,5)/12
у₂=2/12
у₂=1/6 - объём товара в день второй фирмы.
х = 0,25 - у
х = 1/4 - 1/6
х = 1/12 - объём товара в день первой фирмы.
1 : 1/12 = 12 - дней потребуется первой фирме.
1 : 1/6 = 6 - дней потребуется второй фирме.
Разница 6 дней, верно.
Теорема о медианах треугольника
Рассмотрим произвольный треугольник АВС.
teorema_o_medianah_treugolnikama – медиана треугольника, проведенная к стороне BC
mb – медиана треугольника, проведенная к стороне AC
mc– медиана треугольника, проведенная к стороне AB
O – центр пересечения медиан треугольника
A, B, C – вершины треугольника
Теорема о медианах треугольника формулируется следующим образом: медианы треугольника пересекаются в одной точке (на рисунке точка O) и делятся этой точкой в пропорции 2:1, если считать от вершины, с которой проведена медиана.
Все формулы по теме теорема о медианах треугольника:
Основные формулы
Формулы площадей
Формулы объемов
Формулы периметра
Геометрические фигуры
Объемные тела
Площадь поверхности
Тригонометрические формулы
Теоремы по геометрии
Теорема Пифагора
Обратная теорема Пифагора
Теорема косинусов
Теорема синусов
Теорема тангенсов
Теорема о медианах треугольника
Теорема о биссектрисе
Теорема о сумме углов треугольника
Теорема о сумме углов многоугольника
Теорема Чевы
Теорема Виета
Теорема Фалеса
полностью свернуть не получается, а так вроде бы правильно :)