Короче, вся задача сводится к поиску наименьшего такого значения a, так как наименьшему a соотвевствует наименьший x. Итак, путём нехитрых арифметических операция, получим, что x<=a*1000/465 и x>=a*1000/475. Теперь вся суть задачи сводится к нахождению "наилучших" делителей для тысячи в знаменателе, ведь именно тогда мы сможем найти a-наименьшее. Обобщая получим, что нам надо получить "наилучшее" деление от 10^n при x<=475*10^(n-3) и x>=(465*10^(n-3)). Предположим, что мы смогли подобрать такой x в данном диапазоне равный x=5^k*2^i. Это невозможно так как тогда бы минимальным числом а был бы 1 и мы бы получили, что x>0, что не имеет смысла. Теперь предположим, что x=5^k*2^i*3. Тогда мы можем представить x как 4*10^(n-3)+ Очевидно, что на 10^(n-3) делится как 5^k, так и 2^i, то есть, если x действительно делится на 5^k или 2^i, то также должна делиться и часть икса, которая заменена у меня точками. Это значит, что в конце мы получим число 4*10^(n-3-i)+<любое число, не кратное 5>, или 4*10(n-3-k)+<любое число, не кратное 2>, что никогда не равно 3 так как 4>3. Теперь посмотрим, что будет, если мы найдем такое x, что x=5^k*2^i*7. Отсюда следует, что минимальное a равное 7, то есть 0.475x>=7. x>=14.7 то есть x>=15. Подставив, видим, что это правильный ответ
При каких значениях параметра a: Имеет два корня ax²-(1-a)x-3=0
Решение: Квадратное уравнение ax²+bx+c=0 имеет два корня x1 и x2 если а≠0 и его дискриминант D = b²-4ac больше нуля или D>0
Найдем дискриминант
D =(1-a)² -4*a*(-3) =1-2a+a² +12a =a²+10a+1
Решим неравенство D > 0 a² + 10a + 1 >0 Разложим левую часть неравенства на множители решив квадратное уравнение a² + 10a + 1 = 0 D =10² - 4 =100-4 =96
Поэтому можно записать a² + 10a + 1 =(a+5+2√6)(a+5-2√6) Перепишем наше неравенство и решим методом интервалов (a+5+2√6)(a+5-2√6) >0
На числовой прямой отобразим нули квадратного уравнения и определим по методу подстановки (например при а=0 a² + 10a + 1=1>0) знаки левой части неравенства
+ 0 - 0 + -------------!---------------!----------- -5-2√6 -5+2√6 Поэтому неравенство a² + 10a + 1>0 при a∈(-∞;-5-2√6)U(-5+2√6;+∞)
Следовательно исходное квадратное уравнение ax²-(1-a)x-3=0 имеет два корня если a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)
Короче, вся задача сводится к поиску наименьшего такого значения a, так как наименьшему a соотвевствует наименьший x. Итак, путём нехитрых арифметических операция, получим, что x<=a*1000/465 и x>=a*1000/475. Теперь вся суть задачи сводится к нахождению "наилучших" делителей для тысячи в знаменателе, ведь именно тогда мы сможем найти a-наименьшее. Обобщая получим, что нам надо получить "наилучшее" деление от 10^n при x<=475*10^(n-3) и x>=(465*10^(n-3)). Предположим, что мы смогли подобрать такой x в данном диапазоне равный x=5^k*2^i. Это невозможно так как тогда бы минимальным числом а был бы 1 и мы бы получили, что x>0, что не имеет смысла. Теперь предположим, что x=5^k*2^i*3. Тогда мы можем представить x как 4*10^(n-3)+ Очевидно, что на 10^(n-3) делится как 5^k, так и 2^i, то есть, если x действительно делится на 5^k или 2^i, то также должна делиться и часть икса, которая заменена у меня точками. Это значит, что в конце мы получим число 4*10^(n-3-i)+<любое число, не кратное 5>, или 4*10(n-3-k)+<любое число, не кратное 2>, что никогда не равно 3 так как 4>3. Теперь посмотрим, что будет, если мы найдем такое x, что x=5^k*2^i*7. Отсюда следует, что минимальное a равное 7, то есть 0.475x>=7. x>=14.7 то есть x>=15. Подставив, видим, что это правильный ответ
ответ: 15