Смотри) так как уравнение с двумя переменными нужно сделать так чтоб она из переменых в любом случае сократилась,в примере а) и так уже есть переменные которые могут сократиться это х и -х вообщем сладываем получается 3y=6, решаем получаем 2,чтоб узнать y нам нужно подставить х в первое уравнение получаем новое уравнение х+2=4 решаем ответ 2
в примере б) нужно сделать переменную которая должна сократиться это будет y, для этого нам нужно второе уравнение умножить на -2 умножаем и получаем -8х-2y=-6 складываем первое и второе уравнение получаем -3х=6 отсюда х=-2 далее мы подставляем х во второе уравнение и получаем -8+y=3 и находим y решаем и y=11
Могу предложить следующее решение: Пусть х - скорость первого поезда, а у - скорость второго поезда, тогда первый поезд проехал весь путь за 270/х часов, а второй за 270/у часов, при этом он прибыл на 1ч 21 мин. (27/20) позже первого. Можно составить первое уравнение 270/y-270/x=27/20; 270(1/y-1/x)=27/20; 1/y-1/x=1/200 Поезда встретились через 3 часа, значит первый поезд до встречи ехал 3х км, а второй поезд ехал 3у км. Так как они двигались навстречу друг другу, то общее расстояние которое они проехали равно 270 км. Запишем второе уравнение 3х+3у=270 Можно 3 вынести за скобки: 3(х+у)=270; х+у=90 Составим систему 1/y-1/x=1/200 (x-y)/x*y=1/200 x-y=x*y/200 200(x-y)=x*y x+y=90 x=90-y x=90-y
200(90-y-y)=(90-y)*y 18000-400y=90y-y² y²-490y+18000=0 D=(-490)²-4*18000=240100-72000=410 y=(490-410)/2=40 y=(490+410)/2=450 Второй корень нам не подходит (слишком большая скорость), поэтому скорость второго поезда 40 км/ч, а второго х=90-40=50 км/ч.