М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
varenik506
varenik506
13.10.2022 04:42 •  Алгебра

Раздели слова на группы по количеству слогов трава стриж мельниктеремок ягода строй пень земля 1 слог 2 слога 3 слогаллилидиь

👇
Ответ:
папа1231
папа1231
13.10.2022
1 слог: стриж строй пень
2 слога: трава мельник
3 слога: теремок ягода
4,5(29 оценок)
Открыть все ответы
Ответ:
nikolajsagirov
nikolajsagirov
13.10.2022

При каких значениях a неравенство имеет не менее пяти целочисленных решений х²+у²-а²≤6х-4у+а-13.

Объяснение:

х²+у²-а²≤6х-4у+а-13  ,

х²-6х+у²+4у≤а²+а-13  ,

х²-6х+9-9+у²+4у+4-4≤а²+а-13  , свернем формулы

(х-3)²+(у+2)²≤а²+а-13 +13 ,

(х-3)²+(у+2)²≤а²+а . Данное неравенство ограничивает часть плоскости внутри круга с центром (3;-2) . Если r=1 , то целочисленных решений  пять ( четыре лежат на окружности и одно в центре) . Значит радиус r≥1 или r²≥1.

Выражение а²+а =r²  и тогда а²+а≥1   , а²+а-1≥0 .  Нулями данного квадратного трехчлена являются значения  :

а₁=\frac{-1+\sqrt{5} }{2}                   , а₂=\frac{-1-\sqrt{5} }{2}    .   Метод интервалов :

+++++++[\frac{-1-\sqrt{5} }{2} ]- - - - - -[\frac{-1+\sqrt{5} }{2} ]+++++++.    ⇒

х∈(-∞ ;\frac{-1-\sqrt{5} }{2} ] и [\frac{-1+\sqrt{5} }{2} ; +∞).


При каких значениях a неравенство имеет не менее пяти целочисленных решений
4,6(91 оценок)
Ответ:
nata960
nata960
13.10.2022

При каких значениях a неравенство x² +y²- a²≤ 6x - 4y+a -13 имеет не менее пяти целочисленных решений ?

ответ:  a ∈ (-∞ ; (-1 -√5)/2 ]  ∪ [-1 +√5)/2 ; ∞)

Объяснение:

x² +y²- a²≤ 6x - 4y+a -13 ⇔(x²- 6x+9+y²) +(4y +4 )≤ a² + a ⇔

(x -3)²+ (y + 2)² ≤ a² + a. || Ясно (x -3)²+ (y + 2)² ≥ 0 , значит  неравенство  имеет  решений, если a² + a ≥ 0 ⇔ (a+1)a ≥0  ⇒ a∈( -∞ ;-1]∪ [0 ;∞). ||

если  a = -1 или a =0 → одно  решение:   (3 ; -2 ) .

(x -3)² + (y + 2)² = R² уравнения окружности с центром  в точке (3 ;-2)  

и  радиусом  R .                                  

Решение нераенства (x -3)² + (y + 2)² ≤  a² +a   точки  круга с центром  в точке (3 ;-2)  и  радиусом  R =√a(a+1) .                                    

R = 1  ровно  пять целочисленных решений ,  

R =√2 → 9  целочисленных решений   

имеет не менее пяти целочисленных решений , если

R² = a² +a  ≥ 1⇔ a² + a - 1 ≥ 0 ⇒  a ∈ (-∞ ; (-1 -√5)/2 ]  ∪ [-1 +√5)/2 ; ∞) .    

4,8(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ