№1 Применяем ограниченность синуса и косинуса -1≤cosx≤1 Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса -1≤sinx≤1 Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции у=1/(sinx-sin3x) Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0 Найдем при каких х знаменатель равен 0. Решаем уравнение sinx-sin3x=0 Применяем формулу
Так как синус - нечетная функция, то sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z ответ. Область определения: x≠πk, k∈Z x≠(π/4)+(π/2)n, n∈ Z
Пусть Т1, Т2 и Т3 время спуска, подъема и спуска по неподвижному эскалатору. Л – длина эскалатора, Вм – скорость мальчика, Вэ – скорость эскалатора. Имеем Т1(Вм+Вэ) = Л при движении по ходу эскалатора Т2(Вм-Вэ) = Л при движении против хода эскалатора, Далее приравниваем Т1(Вм+Вэ) = Т2(Вм-Вэ) тогда Т1/Т2 = (Вм-Вэ) /(Вм+Вэ) Также Т1*Вм = 30, Т2*Вм = 150, следовательно Т1/Т2 = 30/150 = 1/5, т. е. спуск по движущимуся эскалатору в пять раз быстрее чем подъем по нему. Далее (Вм-Вэ) /(Вм+Вэ) = 1/5, решаем… Вм/Вэ = 3/2, т. е мальчик движеться в полтора раза быстрее эскалатора. Пишем Вэ+3/2Вэ = Л/Т1 при спуске по движущемуся эскалатору 3/2 Вэ = Л/Т3 при спуске по неподвижному эскалатору, делим первое уравнение на второе 2,5/1,5 = Т3/Т1, отсюда Т3 = 2,5*Т1/1,5 Поскольку количество пройденных ступеней прямо пропорционально времени подъема-спуска, то при спуске по неподвижному эскалатору будет пройдено Х = 2,5*30/1,5 = 50 ступеней. Скорей всего правильно это_ X=длина экскалатора в ступеньках: 30+X=150-X X=150-X-30 X=120-X 2X=120 X=120/2 X=60 - кол-во ступенек, при недвижущемся экскалаторе
3(1,2x+3y)-2(0,3x-13y)=3,6x+9y-0,6x+26y=3x+35y
Найти значение этого выражения можно только зная значения x и y, а у тебя почему-то только х:
при х=1,5
3x+35y = 3*1,5 +35y=4,5+35y