ответ:
задать вопрос
войти
октября 16: 24
докажите, что данное уравнение имеет целые корни и найдите их: х^(2)=(√(7−2×√(6))−√(7+2×√()
ответ или решение1
андреева анна
раскроем скобки и решим уравнение, при этом воспользуемся формулами сокращенного умножения:
(a - b)2 = a2 - 2 *a * b + b2.
(a - b)* (а + b) = a2 - b2.
(√(7 - 2 * √6) - √(7 + 2 * √6)) 2 = (√(7 - 2 * √6))2 - 2 * √(7 - 2 * √6) * √(7 + 2 * √6) + √(7 + 2 * √6))2 = 7 - 2 * √6 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) + 7 + 2 * √6 = 14 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) = 14 - 2 * √(72 - (2 * √6) 2) = 14 - 2 * √(49 - 4 * 6) = 14 - 2 * √(49 - 24) = 14 - 2 * √25 = 14 - 2 * √52 = 14 - 2 * 5 = 14 - 10 = 4.
следовательно:
х2 = 4.
х = √4.
х1 = 2; х2 = -2.
ответ: уравнение х2 = (√(7 - 2 * √6) - √(7 + 2 * √6)) 2 имеет корни х1 = 2; х2 = -2
объяснение:
1.
то что показано как решать неэффективно
x² + y² + 2y - 9 = 0
3x - y - 1 = 0
y² + 2y + 1 + x² - 10 = 0 (1)
y = 3x - 1 (2)
(y + 1)² + x² = 10 и подставляем из (2)
(3x - 1 + 1)² + x² = 10
9x² + x² = 10
x² = 1
x = ± 1
x = 1 y = 3x - 1 = 2
x = -1 y=3x - 1 = -4
ответ (1, 2) (-1, -4)
2)
x² - 4x - 5 < 0
3x - 9 > 0
разложим на множители x² - 4x - 5 = (x - 5)(x + 1)
D = 16 + 20 = 36
x12 = (4 +- 6)/2 = 5 -1
(x + 1)(x - 5) < 0
3(x - 3) > 0
Применяем метод интервалов
(-1) (5)
(3)
x ∈ (-1, 5) ∩ (3, +∞)
ответ x ∈ (3, 5)
3)
подкоренные выражения ≥ 0
x - 3 ≥ 0
x² -7x + 6 ≥ 0
раскладываем второе
D = 49 - 24 = 25
x12 = (7 +- 5)/2 = 6 1
x² -7x + 6 = (x - 1)(x - 6)
Применяем метод интервалов
[1] [6]
[3]
x ∈ {(-∞, 1] U [6, +∞)) ∩ (3, +∞)
ответ x ∈ [6, +∞)
65.66=4290
Otvet: 2490