Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно:
Находим сколько точек каждая прямая имеет с графиком y=x²+4x-1 8х-5=х²+4х-1 х²-4х+4=0 D=0 Уравнение имеет один корень, поэтому прямая у=8х-5 не удовлетворяет условию задачи.
2х+1=х²+4х-1 х²+2х-2=0 D=4-4·(-2)=4+8=12 >0 уравнение имеет два корня, значит прямая и парабола пересекаются в двух точках. О т в е т. у=2х+1
n= -0,125
т.е. m больше n