Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
Решение
1) < 1 = 110° ; < 1 = < 3 = 110° , как вертикальные углы
<1 + <2 = 180° , как смежные, < 2 = 180° – 110° = 70°
<2 = <4 = 70° , как вертикальные углы
<4 = < 6 = 70° как внутренние накрест лежажие углы при параллельных прямых a и b и секущей с
<3 = <5 = 110° как внутренние накрест лежажие углы при параллельных прямых a и b и секущей с
<5 = <8 = 110° , как вертикальные углы
<6 = <7 = 700 , как вертикальные углы.
2) Пусть <2 = x , тогда <1 = x + 40.
По свойству смежных углов получаем уравнение
x + x + 40 = 180
2x = 140
x = 70
< 2 = 70°
< 1 = 70° + 40° = 110°
3) Сумма внутренних односторонних углов равна 1800.
<3 + <6 = = 180°
<3 - <6 = 70°
2*(<3) = 180° + 70°
2*(<3) = 250°
<3 = 125°
<6 = 180° – 125° = 55°
<1 = < 3 = 125° , как вертикальные углы
<1 + <2 = 180° , как смежные,
< 2 = 180° – 125° = 55°
<2 = <4 = 55° , как вертикальные углы
<4 = < 6 = 55° как внутренние накрест лежажие углы при параллельных прямых a и b и секущей с
<3 = <5 = 125° как внутренние накрест лежажие углы при параллельных прямых a и b и секущей с
<5 = <8 = 125° , как вертикальные углы
<6 = <7 = 55° , как вертикальные углы.