y=x^2-3x+2
1) Находим точки пересечения графика функции с осью Ох:
х^2-3x+2=0
x1=1, x2=2
(1;0) и (2;0) - искомые точки
2) Находим уравнение касательной к графику функции в точке х=1
y`(x)=(x^2-3x+2)`=2x-3
y`(1)=2*1-3=-1 k1=-1
y(1)=1^2-3*1+2=1-3+2=0
y=0+(-1)(x-1)=-x+1 -уравнение касательной в точке х=1
3) Находим уравнение касательной к графику функции в точке х=2
y`(2)=2*2-3=4-3=1 k2=1
y(2)=2^2-3*2+2=4-6+2=0
y=0+1(x-2)=x-2 -уравнение касательной в точке х=2
4) Коэффициент угла наклона первой касательной k1=-1, а второй касательной k2=1,
следовательно, касательные взаимно перпендикулярны,
т.е.угол между ними равен 90 градусов.
Согласно обычной теореме Безу остаток от деления многочлена F(x) на х+β/α равен F(-β/α), т.е.
F(x)=Q(x)(х+β/α)+F(-β/α), где Q(x) - некоторый многочлен (частное от деления). Это равенство можно переписать как
F(x)=(Q(x)/α)(αx+β)+F(-β/α).
Т.к. Q(x)/α - тоже многочлен, то F(-β/α) - остаток от деления F(x) на αx+β. Итак, этот факт можно сформулировать следующим образом: остаток от деления многочлена F(x) на αx+β равен F(-β/α).