

Получаем квадратное уравнение относительно
cosx=t

Это уравнение имеет хотя бы один корень, если D ≥0
D=64+16(7+3a)=16(11+3a)
D≥0⇒ 11+3a≥0⇒ a≥ -11/3
t₁=1- (√(11+3а))/2 или t₂=1+ (√(11+3а))/2
Обратная замена приводит к уравнениям вида cos=t₁ или cosx=t₂
Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы
-1 ≤ t₁ ≤1 или -1 ≤ t₂ ≤1
Решаем неравенства:
-1 ≤1+ (√(11+3а))/2 ≤1
-2≤√(11+3а))/2≤0
-4≤√(11+3а)≤0
Решением неравенства является
11+3a=0
a=-11/3
t₁=t₂=1/2
cosx=1/2
x=±(π/3)+2πn, n∈Z
Неравенство
-1 ≤1- (√(11+3а))/2 ≤1
также приводит к ответу a=-11/3
О т в е т. При а=-11/3
x=±(π/3)+2πn, n∈Z
Данное двойное неравенство равносильно системе двух квадратных неравенств:

Первое неравенство
.
Заметим, что в левой части скрывается квадрат разности (формула
):
.
Неравенство принимает следующий вид:
.
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай:
и
.
Значит, первой неравенство эквивалентно тому, что
.
Второе неравенство
.
Вс уравнение
имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители:
.
Метод интервалов подсказывает решение
.
+ + + - - - + + +
_________
_________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что
.
Имеем значительно более простую систему неравенств:

Вполне понятно, что ее решением является
(как пересечения двух промежутков).
Или же
.
Задача решена!
ответ:
2)14"2=196
3)225-196=29
4)7"9=40353607
5)8"7=2097152
6)29+2097152=2097181