М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
245mkl
245mkl
24.05.2021 08:48 •  Алгебра

Когда цену товара увеличили на 30%, он стал стоить 52р. определить первоначальную стоимость товара

👇
Ответ:
eremitsa2011
eremitsa2011
24.05.2021

1%=0,01 ⇒ 30%=0,3

Предположим, что первоначальная стоимость товара - это х руб., тогда стоимость товара после повышения на 30% - 0,3х руб., также известно, что товар стал стоить 52 руб.

согласно этим данным составим уравнение и решим его:

х+0,3х=52

1,3х=52

х=52:1,3

х=40 (руб.)

ответ: 40 рублей первоначальная стоимость товара.

Проверка:

40+30%=52 (руб.)

4,5(5 оценок)
Открыть все ответы
Ответ:
ruslikua3
ruslikua3
24.05.2021

Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.

Sn= (a1 + an)/2 * n.

Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:

a1 = 3 * 1 + 2 = 3 + 2 = 5;

a20 = 3 * 20 + 2 = 60 + 2 = 62.

Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.

S20= (a1 + a20)/2 * 20 = (5 + 62)/2 * 20 = 67/2 * 20 = 67 * 10= 670.

Объяснение:

4,5(47 оценок)
Ответ:
ROMMIT2
ROMMIT2
24.05.2021

1.

(sin3A+sinA) / (cos3A+cosA) =

= (2·sin((3A+A)/2)·cos((3A-A)/2)) / (2·cos((3A+A)/2)·cos((3A-A)/2)) =

= (2·sin2A·cosA) / (2·cos2A·cosA) =

= (2·sin2A) / (2·cos2A) =

= (2·sin2A·cos2A) / (2·cos2A·cos2A) =

= (sin4A) / (2·cos²2A) =

= (sin4A) / (2·cos²2A) = (sin4A) / (1+cos4A)

2.

4·cos(A/3)·cos(A/4)·cos(A/6) =

= 4·cos(A/4)·(cos(A/3)·cos(A/6)) =

= 4·cos(A/4)·(1/2)·(cos(A/3+A/6)+cos(A/3-A/6)) =

= 2·cos(A/4)·(cos(A/2)+cos(A/6)) =

= 2·cos(A/4)·cos(A/2)+2·cos(A/4)·cos(A/6) =

= 2·(1/2)·(cos(A/4+A/2)+cos(A/4-A/2)) +

   + 2·(1/2)·(cos(A/4+A/6)+cos(A/4-A/6)) =

= cos(3A/4)+cos(-A/4)+cos(5A/12)+cos(A/12) =

= cos(3A/4)+cos(A/4)+cos(5A/12)+cos(A/12)

4,5(68 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ