8. 1-Б; 2-Г; 3-А; 4-В.
9. 1-Д; 2-Б; 3-Г; 4-А.
Подробнее объяснение:
8. 1) 2cosx = 1
cosx = 1/2
x = ± arccos1/2 + 2πn, n є Z
x = ± π/3 + 2πn, n є Z. Б.
2) 2cosx/2 = 1
cosx/2 = 1/2
x/2 = ± arccos1/2 + 2πn, n є Z
x/2 = ± π/3 + 2πn, n є Z.
x = ± 2π/3 + 4πn, n є Z. Г.
3) cos2x = 1
2x = ± arccos1/2 + 2πn, n є Z
2x = ± π/3 + 2πn, n є Z.
x = ± π/6 + πn, n є Z. А.
4) cosx/2 = 1
x/2 = 2πn, n є Z.
x = 4πn, n є Z. В.
Відповідь: 1-Б; 2-Г; 3-А; 4-В.
9. 1) sin2x = 0. [0; 2π] sinx є [-1; 1]
2x = πn, n є Z
x = πn/2, n є Z n = 0, x = 0 +
n = 1, x = π/2. +
n = 2, x = π +
n = 3, x = 3π/2 +
n = 4, x = 2π. +
n = 5, x = 5π/2 -
П'ять коренів. Д.
2) sin2x = 1. [0; 2π]
2x = π/2 + 2πk, k є Z.
x = π/4 + πk, k є Z.
k = 0, x = π/4. +
k = 1, x = 5π/4. +
k = 2, x = 9π/4. -
Два корені. Б.
3) cos2x = 0. [0; 2π]
2x = π/2 + πm, m є Z.
x = π/4 + πm/2, m є Z.
m = 0, x = π/4. +
m = 1, x = 3π/4. +
m = 2, x = 5π/4. +
m = 3, x = 7π/4. +
m = 4, x = 9π/4. -
Чотири корені. Г.
4) tgx/2 = 1. [0; 2π]
x/2 = arctg1 + πt, t є Z.
x/2 = π/4 + πt, t є Z.
x = π/2 + 2πt, t є Z.
t = 0, x = π/2 . +
t = 1, x = 5π/2. -
Один корінь. А.
Відповідь: 1-Д; 2-Б; 3-Г; 4-А.
Обозначим числа x1, x2, x3, x4, разность арифметической прогрессии -d (минус, потому что она убывающая), тогда x2=x1-d, x3=x1-2d.
Причём d > 0
Знаменатель геометрической прогрессии обозначим q.
x3=x1-2d=x2*q=(x1-d)*q
x4=x2*q^2=(x1-d)*q^2
x1+x4=x1+(x1-d)*q^2=7
x2+x3=x1-d+x1-2d=6
Из 4 уравнения
x1=(6+3d)/2=3+1,5d
x2=a1-d=3+0,5d
x3=a2-d=3-0,5d=(3+0,5d)*q
q=(3-0,5d)/(3+0,5d)
q^2=(3-0,5d)^2/(3+0.5d)^2
x1+x4=3+1,5d+(3+0,5d)(3-0,5d)^2/(3+0,5d)^2=7
3+1,5d+(3-0,5d)^2/(3+0,5d)=7
Умножаем на знаменатель.
(3+1,5d)(3+0,5d)+(3-0,5d)^2=7(3+0,5d)
9+4,5d+1,5d+0,75d^2+9-3d+0,25d^2=21+3,5d
18+3d+d^2-21-3,5d=0
d^2-0,5d-3=0
2d^2-d-6=0
D=1-4*2(-6)=49=7^2
d1=(1-7)/4=-6/4<0 -не подходит
d2=(1+7)/4=2>0 - подходит.
d=2; x1=3+1,5d=3+3=6;
x2=6-2=4; x3=4-2=2;
q=x3/x2=2/4=0,5; x4=2*0,5=1.
ответ: 6; 4; 2; 1
значит
f(x−2)=√(x-2)
√(x-2)=10
х - 2 =100
х=102