Функция
1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").
2) Пересечение с осью аргументов означает равенство . То есть требуется решить уравнение
. Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.
3) Чётность/нечётность относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.
4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то
Точки экстремума: 0[/tex]
Вторая производная: => выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.
Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.
5) Точки экстремумов были найдены выше.
6) Рисунок 1 в аттаче.
7) Они хотят интеграл? Ого. Не, это только завтра.
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b