М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hedaku
hedaku
05.02.2020 13:48 •  Алгебра

1) 16х(2-х)+(4х-5)=0 2) 9у(у++1)=-1

👇
Ответ:
Fidashka5616
Fidashka5616
05.02.2020
1) 32х-16х^2+4х-5=0;
36х-16х^2-5=0; :(-16);
х^2-36/16х+5/16=0;
х^2-9/4х+5/16=0;
х^2-2*9/8х+81/64-81/64+5/16=0;
(х-9/8)^2= 81/64-20/64= 61/64;
х-9/8= +-(61^1/2)/8;
х1=9/8-(61^1/2)/8; х2=9/8+(61^2)/8;
2) 9у^2+54у-3у-1+1=0;
9у^2+51у=0;
у(9у+51)=0;
у=0;
9у+51=0, 9у=-51, у=-51/9, у=-17/3=-5цел 2/3;
у1=0; у2=-5цел 2/3;
4,8(32 оценок)
Открыть все ответы
Ответ:
aiau2004
aiau2004
05.02.2020
По формуле классической вероятности:
p=m/n
n=90 ( количество двузначных чисел)

Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=12
d=15-12=3
99=12+3·(n-1)    ⇒87=3(n-1)    n-1=29    n=30

Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=10
d=15-10=5
95=10+5·(n-1)    ⇒85=5(n-1)    n-1=19    n=20

Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90

m=30+20-6=44

p=44/90=22/45
4,7(94 оценок)
Ответ:
wiwivvv
wiwivvv
05.02.2020

Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.

Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи: 
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2). 

Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места. 

ответ: 0,3

4,7(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ