Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
Во- первых, найдем значение производной, которое равно значению углового коэффициента касательной, в данном случае k=7 ( из уравнения касательной - это коэффициент перед х). y'=6x+1; 6x+1=7; 6x=6; x=1. То есть именно в точке х=1 прямая у=7х+а является касательной. Теперь, чтобы найти а, приравняем уравнения прямой и уравнение параболы(так как это их общая точка и значения функции у обоих графиков будут совпадать), потом подставим вместо х значение х=1. 3x^2+x-1=7x+а; 3x^2-6x-1=a; a=3*1-6*1-1; a=-4. ответ: а= - 4. Надеюсь, объяснение более чем подробноею