Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
Y=x^3-3x Производная функции равна: y'=3x^2-3 Приравниваем производную к нулю: y'=0 3x^2-3=0 3(x^2-1)=0 x^2-1=0 x1=1 x2=-1 Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность) Берём любую точку из каждого интервала и подставляем в производную (3x^2-3). Из интервала (минус бесконечность; -1] возьмём -2. 3*(-2)^2-3=3*4-3=12-3=9 9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0. 3*0^2-3=-3 -3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2. 3*2^2-3=12-3=9 9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
все, тут больше нечего выносить