Так как в заданной функции присутствует дробь, то из ОДЗ надо исключить недопустимое значение х = -1. Теперь можно преобразовать дробь: х^4-2х^2-(5(х^2-1)/(х+1))+5х == х^4-2х^2-(5(х+1)(х-1)/(х+1))+5х После сокращения на х+1 получаем:х^4-2х^2-5(х-1)+5х =х^4-2х^2-5х+5+5х =х^4-2х^2+5.Находим производную: f' =4x ³-4x и приравниваем её 0: 4x ³-4x = 0 4х(х²-1) = 0. Решая это уравнение, находим критические точки: 4х = 0 х₁ = 0 х² - 1 = 0 х² = 1 х = √1 х₂ = 1 х₃ = -1 этот корень отбрасываем. Теперь определяем, где минимум, а где максимум. Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:x2 = 1 Максимумы функции в точках:x2 = 0 Убывает на промежутках (-oo, 0] U [1, oo) Возрастает на промежутках [0, 1]
б) (15m³ + n² - m) + (2m - n² - 5m³) = 15m³ + n² - m + 2m - n² - 5m³ = 10m³ + m
в) (13m+n-c)-(12m+5n-3c) = 13m + n - c - 12m - 5n + 3c = m - 4n + 2c
г) 15m²nc²n - 20mncmn = 15m²n²c² - 20m²n²c = 5m²n²c(3c - 4)
д) 7y - (2y - 5x + c) = 7y - 2y + 5x - c = 5y + 5x - c