если все числа целые и периметр = 5, то стороны трапеции 1, 1, 1 и 2.
т.е. это равнобокая трапеция, у которой углы при основаниях равны.
Пусть трапеция АВСD, АВ и СD - бока =1 каждая, ВС - малое основание =1, AD - большое основание =2.
Из точки В опустим высоту BH
Рассмотрим полученный треугольник АВН
АВ=1
АН = (AD-ВС)/2=0,5
косинус угла А = АН/АВ = 0,5
следовательно, угол А=60градусов.
Угол D = углу А, т.к. трапеция равнобокая
следовательно сумма углов при большем основании (т.е. А и D) = 120
Обозначим за v - скорость работы первой бригады, u- скорость работы второй бригады. По условию задачи всю работу они могут выполнить за 30 дней, если работают вместе.
Пусть A - вся работа.
30*(u+v)=A (1)
Но на самом деле получилось по-другому. Сначала они работали 6 дней 6*(u+v), а потом дорабатывала вторая бригада 40 дней - 40u. То есть 6*(u+v)+40u. Опять таки вся работа была выполнена.
6*(u+v)+40u=А (2)
Приравняем левые части уравнений (1) и (2)
30*(u+v)=6*(u+v)+40u
30*(u+v)-6*(u+v)=40u
24(u+v)=40u
Делим обе части на 8.
3(u+v)=5u
3u+3v=5u
3v=5u-3u
3v=2u (3)
Выразим v через u
v=2/3u
Подставим в первое уравнение
30*(u+2/3u)=A
30*(5/3u)=A
30*5/3*u=A
50u=A
Здесь u - скорость выполнения работы второй бригадой. А - вся работа. Значит 50 суток - время, за которое выполнит всю работу вторая бригада одна.
Теперь выразим из 3-его уравнения u через v.
u=1,5v
Снова подставляем значение u через v в первое уравнение.
30*(1,5v+v)=A
30*2,5v=A
75v=A
Здесь v - скорость выполнения работы первой бригадой. А - вся работа. Значит 75 суток - время, за которое выполнит всю работу первая бригада одна.
ответ: 75 суток - время, за которое выполнит всю работу первая бригада одна.
50 суток - время, за которое выполнит всю работу вторая бригада одна.
x^2 + 5x - 2x - 10 + 6 = 0
x^2 + 3x - 4 = 0
D = 3^2 - 4*1*(-4) = 9 + 16 = 25 = 5^2
x = - 3 + 5 / 2 = 2/2 = 1
x = - 3 - 5 / 2 = - 8 / 2 = - 4