нужно решить диофантовое уравнение от двух переменных в натуральных числаъ получим простым перебором находим "минимальное" решение в натуральных числах 7*3-5*4=1 где l є N {0}
тогда формула искомых чисех где l є N {0}[/tex] первый член равен 50-й член равен Сумма первых 50-ти равна ---- более просто можно было на первых членах проследить появление первого члена 17 и заметить что разность последовательности образованной с двух данных тоже является арифмитической прогрессией с разностью равной 35
Так как AK - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины AB и AC: используем формулу: находим координаты точки K: теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B подставим значения: cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный