x= - 11 точка локального минимума функции
Объяснение:
Дана функция
1) Вычислим производную от функции:
2) Находим критические точки:
3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:
Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).
а) Пусть x= -12∈(-∞; -11):
Значит, на интервале (-∞; -11) функция убывает.
б) Пусть x= -10∈(-11; -9):
Значит, на интервале (-11; -9) функция возрастает.
в) Пусть x= 0∈(-9; +∞):
Значит, на интервале (-9; +∞) функция убывает.
4) Определим экстремумы функции:
Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.
Функция возрастает на интервале (-11; -9) и убывает на интервале (-9; +∞), то x= - 9 точка локального максимума функции.
x^2+2x+25-25+10x=17x+24;
x^2+12x=17x+24;
x^2-5x-24=0;
D=121; x1=8; x2=-3;
2) x^2+10x+25+x^2-4x+4+x^2-49=11x+80;
3x^2+6x-20=11x+80;
3x^2-5x-100=0;
D=1225; x1=5+35/6=40/6=20/3;
x2=-30/6=-5;