в заданной прогрессии 6 членов
Объяснение:
1. Для заданной геометрической прогрессии B(n) известно следующее:
B1 + Bn = 66;
B1 = 66 - Bn;
2. B2 * B(n - 1) = 128;
(B1 * q) * (B1 * q^(n - 2) = B1 * (B1 * q* q^(n - 2)) =
B1 * (B1 * q^(n - 1)) = B1 * Bn = 128;
(66 - Bn) * Bn = 128;
Bn² - 66 * Bn + 128 = 0;
Bn1,2 = 33 +- sqrt(33² - 128) = 33 +- 31;
Bn = 33 + 31 = 64 (прогрессия возрастающая);
B1 = 66 - Bn = 66 - 64 = 2;
3. Вычислим n:
B1 * Bn = B1² * q^(n - 1) = 128;
q^(n - 1) = 128 / B1² = 128 / 2² = 32 = 2^5;
n - 1 = 5;
n = 5 + 1 = 6.
Функция y = , где n - натуральное число, при n нечетном определена на всей действительной оси, а при n четном - только на полуоси x > 0 и принимает при x > 0 два значения. Если ограничиться только неотрицательными значениями корня, то и при четном n получится однозначная функция.
Функция y = является обратной к степенной функции y = xn. Поэтому ее график симметричен относительно биссектрис первого и третьего координатных углов: при нечетном n > 1 он имеет вид, изображенный на рис. 26, а при четном, если ограничиться арифметическими значениями корняВ силу сказанного выше ее график (он называется полукубической параболой) имеет вид, изображенный на рис. 28.
В качестве второго примера рассмотрим функцию y = x-2/3.
^ это степень
* это умножение