1)=(по основанию 5) log(4+x)(1+2x)= log 9 4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2 4+8x+x+2x²=9 2x²+9x-5=0 x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2 x2=1/2-ответ 2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1 = (по основанию 2)log(1+x)(2+x)=1 x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1 x=0- ответ 3) x-2>0 x>2 и x+1>0 x>-1, т е x>2 = (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ
1)Чтобы уравнение имело 2 различных корня, дискриминант должен быть больше 0. ТОгда a=3; b=-2p; c=6-p. D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0; p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0; p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность). 2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю. Д=0 при р= -6 и при р =3. 3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля. p^2+3p-18 <0; -6 < p < 3. p∈ ( -6; 3) 4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
Иррациональные те у которых нету конца (пример: .01111111111111111)