Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
Находим нуль числителя.
x^2-4x-21 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√100-(-4))/(2*1)=(10-(-4))/2=(10+4)/2=14/2=7;x₂=(-√100-(-4))/(2*1)=(-10-(-4))/2=(-10+4)/2=-6/2=-3.
Исходное уравнение можно представить дробью, в которой числитель разложен на множители:
Значит, если с примет значение или -7, или 3, то останется один корень.