В задаче отсутствует вопрос. Исхожу из предположения, что требуется определить время движения. t = S/v = 400/v. Но скорость задана не конкретным значением, а границами. Значит время можно только оценить. 50<v<80 заменим обратными числами,при этом меняем знак неравенства. 1/50 > 1/v > 1/80. Запишем в привычном виде: 1/80 < 1/v < 1/50. Теперь умножим все части неравенства на 400. 400/80< 400/v< 400/50. 5< t<8. Значит при заданных условиях время движения от 5 до 8 часов.
Графиком функции y=x^2-3x+2 является парабола, у которой ветви направлены вверх, найдём точку вершины этой параболы: X(вершины)=-b/2a=-(-3)/2=3/2=1,5 подставим это значение в уравнение, чтобы получить Y(вершины): Y(вершины)=(3/2)^2-3*3/2+2=-0,25 затем находим точки пересечения этой параболы с осью ОХ, для этого мы приравниваем данное уравнение к нулю: x^2-3x+2=0 и ищем его корни: x1=1; x2=2; используя полученные точки строим параболу. теперь строим прямую Y=x-1 по точкам: A(1;0); B(0;-1) далее найдём точки пересечения этих графиков , для этого приравняем уравнения этих графиков: x^2-3x+2=x-1 корни этого уравнения равны: x1=1; x2=3; координаты точек пересечения этих графиков равны: C(1;0) и D(3;2) фигура ограничена линиями x=1 и x=3 и уравнениями графиков функций, обозначим их y=f1(x) и y=f2(x), тогда площадь фигуры вычисляется по формуле: S= считаем интеграл: S= S=4/3