Объяснение: 1) Задать формулой функцию, график которой проходит через точки А(1;1) и В(2;4). Решение : Уравнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: 1= k+b b и 4= 2k+b. Из первого уравнения b=1 - k, подставим во второе, получим 4= 2k+1-k ⇒k=3, b= 1-3=-2. Значит уравнение прямой у = 3х - 2.
2) Задать формулой функцию, график которой проходит через точки А(-12;-7) и В(15;2). Решение:равнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: -7 = -12k+b и 2 = 15k+b. Из второго уравнения b= 2-15k подставим в первое: -7 = -12k+2-15k ⇒ -9 = -27k ⇒k= 9/27=1/3 , тогда b= 2-15·1/3=2-5=-3. Уравнение прямой у= 1/3·х -3
№Задать формулой функцию, график которой проходит через точки А(-5;0) и В(12;-1). Решение аналогично: 0= -5k+b и -1 = 12k+b ⇒ k=1/17, b=5/17. Уравнение прямой у= 1/17·х +5/17
4)Задать формулой функцию, график которой проходит через точки А(0;3) и В(2;-1). Решение аналогично: 3= 0·k+b и -1= 2k+b ⇒b=3, k=(-1-b)/2=(-1-3)/2=-2 Уравнение прямой : у=-2х+3
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√3 = √а
(3√3)² = (√а)²
9*3 = а
а=27;
b) Если х∈[9; 25], то какие значения будет принимать данная функция?
у= √х
у=√9=3;
у=√25=5;
При х∈ [9; 25] у∈ [3; 5].
с) y∈ [14; 23]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
23 = √х
(23)² = (√х)²
х=529;
При х∈ [196; 529] y∈ [14; 23].
d) Найдите при каких х выполняется неравенство у ≤ 4.
√х <= 4
(√х)² <= (4)²
х <= 16;
Неравенство у ≤ 4 выполняется при х <= 16.
Найдем наименьший номер члена прогрессии на данном интервале
17n-16>230; 17n>246; т.к. n целое, то n=15. Теперь найдем наибольший
17n-16<300; 17n<316 n=18. Число членов равно 18-15+1=4
2) В арифметической прогрессии
число
(-8+(-5))/2=-6,5; 2a=-6.5; a=-3.25
3)Можно так же применить св-во среднего члена прогрессии и тогда