1. Пусть числитель дроби - (х), тогда знаменатель дроби на 3 больше - (х+3) 2. Увеличиваем числительно на 1, а знаменатель на 5: Числитель - (х)+1 = х+1 Знаменатель - (х+3)+5 = х+8 3. Полученная дробь меньше первой на 1/6. Значит, (х)/(х+3)=(х+1)/(х+8)-1/6 (х)/(х+3)-(х+1)/(х+8)+1/6=0 Приведём дроби к общему знаменателю 6*(х+3)*(х+8):
( (х)*6*(х+8) ) - ( (х+1)*6*(х+3) ) + ( (х+3)*(х+8) ) разделить на 6*(х+3)*(х+8) равно нулю
6х^2+48х-6х^2-24х-18+х^2+11х+24 разделить на 6*(х+3)*(х+8) равно нулю
(х^2+35х+6)/(6*(х+3)*(х+8))= 0
Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю:
х^2+35х+6=0, при условии, что 6*(х+3)*(х+8) не равно нулю
Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.
Применим данную теорию к нашей задаче: А – событие, когда выпадет 9 очков;
Р(А) – вероятность того, что выпадет 9 очков Определим m и n: m — число благоприятствующих этому событию исходов, то есть число исходов, когда выпадет 9 очков. В эксперименте бросают три игральные кости, которые имеют 6 граней. Каждая грань имеет своё значение от 1 до 6. Нам необходимо, чтобы выпало 9 очков, а это возможно тогда, когда выпадет следующее сочетание чисел на гранях этих костей: 126, 162, 216, 261, 144, 414, 441, 333, 522, 252, 225, 234, 324, 243, 342, 432, 423, 135, 315, 153, 531, 351, 513, 612, 621 то есть получается, что
m = 25, так как возможно 25 вариантов выпадения 9 очков;
n – общее число всевозможных исходов, то есть для определения n нам необходимо найти количество всех возможных комбинаций, которые могут выпасть на кубиках. Кидая первый кубик, может выпасть 6 вариантов, при бросании второго – тоже 6, и при третьем — 6. Получается, что
n = 6 · 6 · 6 = 216 Осталось найти вероятность выпадения 7 очков: Р(А) = m / n = 25/216 = 0,11574….
(2с-4)/(dс-2d)=2(с-2)/d(c-2)=2/d=2/5=0,4