Объяснение:
x²-19x+g=0 , x1=x , x2=x1+3
(podstawlajem)
{x1² - 19x1+g=0
{(x1+3)²-19*(x1+3)+g=0
{x1²-19x1+g=0
{x1²+6x1+9-19x1-57+g=0
{x1²-19x1+g=0
{x1²-13x1-48+g=0
{x1²-19x1+g=0
{x1²-13x1+g=48 * (-1)
{ x1²-19x1+g=0
(+) {-x1²+13x1-g=-48 (składywajem)
-6x1=-48
x1=8
(podstawlajem x1=8 do (1) urawnienija x²-19x+g=0
8²-19*8+g=0
64-152+g=0
g=88
kwdratowe urawnienije ma postać: x²-19x+88=0
po formule VIETA liczymy wtoroj korień x2
x1*x2=g
8*x2=88 // : 8
x2=11
Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A, H, W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:
N – множество всех натуральных чисел;
Z – множество целых чисел;
Q – множество рациональных чисел;
J – множество иррациональных чисел;
R – множество действительных чисел;
C – множество комплексных чисел.
Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q, это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A.
Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.
Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.
И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z, таким образом, числовое множество N включено в Z, это обозначается как N⊂Z. Также можно использовать запись Z⊃N, которая означает, что множество всех целых чисел Z включает множество N. Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.
Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.
Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в фигурные скобки, что согласуется с общими правилами описания множеств. Например, множество, состоящее из трех чисел 0, −0,25 и 4/7 можно описать как {0, −0,25, 4/7}.
Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99включительно можно записать как {3, 5, 7, …, 99}.
Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …}.
Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства}. Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3. Это же множество можно описать как {11,19, 27, …}.
В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N, Z, R, и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).
Покажем пример. Пусть числовое множество составляют числа −10, −9, −8,56, 0, все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞). В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞). Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0}, [−5, −1,3] и (7, +∞).
Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.
Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими
-4sin^(2)x<-1
sin^(2)x>1/4
(1-cos2x)/2>1/4
1-cos2x>1/2
cos2x<1/2
2x<+(-)arccos1/2+2πn
2x<+(-)π/3+2πn
x<+(-)π/6+πn